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Ah&act-It is shown that in several cases where planar delocalisation in organic cations would result in the 
formation of an anti-aromatic system, polyhedral delocalisation is the form of bonding actually preferred. This 
explains, for instance, why organic cations in such cases adopt cage-lie structures. A full graph-theoretical 
analysis, similar to one previously publishedr2 for polyhedral boranes, carboranes and metal clusters, indicates that 
the nido structure for (CHh+ may readily be accounted for. Moreover, in the case of the dication (CHh” the fact 
that its energy minimum also corresponds to a nido structure is explained. In fact, no close- or arachno-type 
structures appear to be possible for organic cations. A number of structural predictions concerning these species 
are given in the conclusion. 

The structures adopted by organic cations consisting 
only of CH groups have been the focus of much interest 
and speculation over the past decade. In 1972, for in- 
stance, it came as something of a surprise to organic 
chemists when Stohrer and Hoff mann concluded,’ on the 
basis of a theoretical treatment using Extended Hilckel 
Theory, that the energy minimum for the (CHk’ cation 
does not correspond to any of the planar classical struc- 
tures I to III illustrated in Fig. 1. The structure they 
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Fig. 1. Structures for (CH)r+ where each vertex represents a CH 

obtained by Coates and Fretz? Evidence from the “C- 
‘H coupling constants indicates that the apical C atom in 
the carbotation VI has sp-hybridization,8 a fact which 
will be seen to be highly sign&ant in our later dis- 
cussion. 

group. 

proposed was rather a cage structure in the form of a 
square pyramid, namely the structure V in Fig. 1. 
Analogous pyramidal structures were already known or 
had at least been postulated within the realm of borane 
and carborane chemistry.2 The surprise deepened when 
experimental proof was presented by Masamune et aLacb 
that the actual structure. of the cation is indeed that 
represented by V. Further theoretical calculations using 
a variety of diiering methods later conlirmed’ that 
structure V is in fact more stable than those of structures 
I-III. A fourth classical structure is even possible for this 
cation,6 though this was not considered in any of the 
theoretical treatments. As a vinylic cation, however, this 
structure, depicted as IV in Fig. 1, is likely to have a 
higher energy than that for the structures I-III. Ac- 
cordingly, we shall not enter into further discussion of it 
in this work. 

Investigations carried out on the (CH)62’ dication also 
produced some surprises. Hogeveen and Kwant pointed 
out” that a description of its structure must involve 
certain non-classical features. Their preparative work” 
resulted in the synthesis of the (CMeb2+ dication, and a 
subsequent structural determination based on ‘H-NMR 
and 13C-NMR spectral data revealed that it adopts the 
non-planar, non-classical structure VIII (Fig. 3), a struc- 

VIII IX 
Fu. 3. structures of (CCH3k2’ (VIII) and of an analqmas iso- 

electronic salt (IX). 

A number of related pyramidal cations with bis-homo- ture which is again pyramidal. In this instance the bond- 
(CH)5+ structures were subsequently prepared by Mas- ing topology involves a hexa-coordiited C atom, a 

amune ef al.’ and by Hart et ul.‘~*, e.g. the cation VI in 
Fig. 2 having the formula CsHMes+. Moreover, the very 
interesting (CH)9’ cation, shown as VII in Fig. 2, was 

,H H 

VI VII 

Fig. 2. Structures of the species CrH(CH3h+ (VI) and (CHk+ 
(VII). 
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feature normally encountered only within the field of 
organometahic chemistry. This latter observation leads 
us directly into the subject matter of this paper. 

The basic analogy. It is our considered opinion that the 
analogy suggested here between the bonding situation in 
organometallic species and the carboranes on the one 
hand, and that in organic cations on the other may be 
profitably exploited. In fact, we believe that the analogy 
can be developed so far as to provide a rationalisation of 
the bonding topology in those organic cations possessed 
of a polyhedral structure. Our argumentation will make 
use of a wide-ranging, general theory,” first put forward 
to account for and characterise the bonding toplogy in 
borane, carborane, and metal cluster species. The basic 
mathematical tool employed in this approach was al- 
gebraic graph theory.” The considerable success of this 
theory in explaining and rationalising a large number of 
differing structural types suggested to us that an exten- 
sion to the purely organic sphere of carbo-cations may 
well pay dividends. In this first attempt to do this, we 
start by giving an outline of the principal features of the 
new theory, then go on to indicate how it may be applied 
in the specific area of organic cations, and conclude by 
making several novel predictions concerning the struc- 
tures adopted in such species. 

Graph-theoretical preliminaries. As the theory we shall 
be using rests essentially upon a graph-theoretical inter- 
pretation of the bonding topology in the relevant chem- 
ical species, we provide first a summary of the pertinent 
parts of the mathematical discipline of graph theory. This 
discipline involves primarily the study of topological 
graphs, so designated here to distinguish them from the 
more frequently encountered Cartesian variety, with 
which they have nothing in common. A topological graph 
consists rather of a set of points, known as oertices, and 
a set of lines, known as edges, which connect pairs of the 
points together. Graphs may be conveniently used to 
depict either molecules (where vertices symbolise atoms 
and edges the covalent chemical bonds) or complex 
reactions (where vertices symbolise chemical species and 
edges the elementary reactions which may interconvert 
the species into one another). In recent years graphs 
have also been employed for a variety of other purposes; 
the reader interested in the details of this aspect of graph 
theory is referred to several reviews on the subject.‘3-‘5 

The former type of graph representing a molecule is 
referred to variously as a structural, constitutional, or 
molecular graph whereas the latter type is usually called 
a reaction graph. In the present context where we shall 
be using only structural graphs, two particular types of 
graph are relevant for our subsequent discussion. These 
are the so-called cyclic graph (diagram X) and the com- 
plete graph (diagram XI). Both of them are illustrated in 
Fig. 4 for the case when there are n = 6 vertices. A cyclic 
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Fig. 4. The cyclic graph CS (X) and the complete graph KS (XI). 

graph, designated as a (L-graph, is a graph having all n of 
its vertices connected by means of n edges such that a 
single cycle results. A complete graph, designated as K,, 
is a graph having every pair of its n vertices connected 
by an edge. Further mathematical description of these 

graphs is to be found in two monographs treating this 
topic.r6.” 

King-Rouuray theory. The essential, underlying idea 
behind the theory put forwardI by King and Rouvray is 
that whereas C,-type graphs are appropriate for the 
representation of planar, polygonal systems such as 
benzene, K.-type graphs have to be employed for the 
characterisation of three-dimensional, closed polyhedral 
systems such as the boranes and carboranes. After mak- 
ing due allowance for this important difference, however, 
both 2- and 3-dimensional systems may thereafter be 
analyzed in graph-theoretical terms in a completely 
analogous way. As our present interest is centred pri- 
marily on the analysis of polyhedral structures, we shall 
indicate hereinafter how the theory may be applied to 
rationalise the bonding topology in such systems. As our 
starting point we shall suppose that the skeletal frame- 
work consists of n atoms arranged in a polyhedral 
configuration and that the system may be represented by 
means of a K, graph. The signiticance of the edges of 
this graph, which represent the bonds existing between 
the atoms, is now explored in some detail. 

Closo deltahedral systems. In electron-deficient poly- 
hedral molecules, i.e. in those having less electrons than 
bonding orbitals, a global delocalisation occurs which 
results in a triangulated polyhedral or deltahedral struc- 
ture. In the simplest case when all of the faces of the 
polyhedron are triangular, i.e. when we consider a close 
system, and when d orbital involvement (which normally 
occurs only in metal clusters) is neglected, every atom 
having a valency greater than one is assumed to adopt an 
sp-type hybridisation. This assumption is in accordance 
with the relevant experimental data on VI cited above.* 
Each atom may then use one of its two sp orbitals, a 
so-called external orbital, to form a normal, covalent, 
localised bond with a univalent atom or group such as 
hydrogen. The other sp orbital, referred to as a unique 
internal orbital or radial orbital,‘* is directed towards the 
centre of the polyhedron, where it participates in global 
delocalisation as described below. 

Overlap of the two remaining, non-hybridised p orbi- 
tals, known as the twin internal orbitals, gives rise to the 
deltahedral structure. Both of the p orbitals are used in 
the formation of bonds to two adjacent atoms within the 
skeletal framework. As a result of these overlaps several 
Hamiltonian circuits, i.e. closed paths passing only once 
through each vertex, may be traced out on the surface of 
the deltahedron. Such circuits are to be considered as 
representing the limiting bonding structures formed from 
the mutual overlaps of the twin internal orbitals. The 
actual enumeration of these circuits for a given poly- 
hedron is an interesting, only partially solved mathema- 
tical problem.” 

The interaction at the centre of the deltahedron of the 
n unique internal orbitah from the n skeletal atoms 
constituting the deltahedral framework means that all of 
these atoms are directly connected through the core 
bonding. Now a bonding situation of this type, which 
implies a global delocalisation of electrons within the 
deltahedron, may be conveniently represented by means 
of a K,,-type graph. It is well-knowt?’ that the eigenvalue 
spectrum of any K. graph has exactly one positive 
eigenvalue equal to n - 1 and a total of n - 1 degenerate, 
negative eigenvalues equal to - 1. This eigenvalue pat- 
tern is used here to represent the electronic energy levels 
available to the system when interaction of the twin 
internal orbitals and that among the unique internal orbi- 



Graph-theoretical analysis of the bonding topology in polyhedral organic cations 1853 

tals takes place. It is readily seen that the resulting 
system must have a total of n + 1 bonding orbitals (con- 
sisting of the above-mentioned single positive eigenvalue 
and one from each of the n twin internal orbitals’*). 
Application of the Aufbau Principle now leads directly to 
the conclusion that the number b of electrons required 
to form a closed shell (corresponding to the most 
favoured energetic situation in a close system) will be 
given by the expression 

n,=2nt2. (1) 

Nido and arachno systems. Less electron-deficient 
systems, frequently referred to as electron-rich sys- 
tems,‘***’ are amenable to similar treatment. Such sys- 
tems are based on polyhedral frameworks having one or 
more holes. In the present context a hole is defined as 
any face which has more than three edges.” Using as 
our reference starting point the relation (l), it may be 
seen that when a single extra pair of electrons is avail- 
able, i.e. when the system contains 2n + 4 skeletal bond- 
ing electrons in all, one bond in the skeletal framework 
becomes effectively deleted. This is because the extra 
pair of electrons must go into an antibonding orbital and 
so cancel out one bonding orbital. For this reason, the 
process of deletion is referred to as polyhedral punc- 
ture.” As this process may be repeatedly performed, we 
may conclude that in general, whenever h extra pairs of 
electrons are available, h bonds in the polyhedral 
framework will be deleted and h holes will be formed. 
For the special case with h = 1, the system will have only 
one hole and is termed a nido system. If h = 2, there will 
be two holes present and the system is then known as an 
arachno system. It should be mentioned, though, that in 
some instances instead of two square holes one larger 
bent hole may be formed. 

In specifying the bonding topology of nido and 
arachno systems, one considers separately the two 
groups of atoms having a valency higher than one. These 
are the atoms forming the border of a hole (represented 
as the border vertices of the graph, e.g. the four vertices 
of the base of the pyramid in III), and the remaining 
atoms (represented as interior oertices of the graph, e.g. 
the apex of the pyramid in III). The latter atoms behave 
exactly as those discussed above in close systems. In the 
case of the border atoms, however, two kinds of hybri- 
disation have to be considered. These are (i) sp* hybrid- 
isation, as indicated in the previous paper,” where the 
external and twin internal orbitals are taken to be sp* 
hybrids, thereby leaving the non-hybridised p orbital as 
the unique internal orbital, and (ii) non-hybridised orbi- 
tals, with the external orbital as an s orbital, and the two 
twin internal orbit& and the unique internal orbital as 
unhybridised p orbitals. The latter possibility seems 
rather more likely on purely geometrical considerations, 
as square holes, for instance, could then much more 
readily assume their valence angle of 90”. 

At the present time there are no experimental data 
available on the hybridisation adopted by border atoms, 
although data are to be found on the apical atoms! It is 
of interest to note that both of the possibilities (i) and (ii) 
will give rise to the same closed shell structure in nido 
systems when there is a total of 

&=2nt4 (2) 

skeletal electrons in the internal orbitals. This conclusion 

may be reached by a separate consideration of the two 
complete graphs formed respectively by the border ver- 
tices and by the interior vertices, and subsequent com- 
bination of their eigenvalue spectra.‘* Analogously, for 
arachno systems the closed shell must contain 

&=2nt6 (3) 

skeletal electrons.‘* By combining the eqns (l)-(3), we 
obtain a single formula for the skeletal electrons in close, 
nido and arachno systems as follows: 

&=2nt2ht2, 

where h is the number of holes. 

(4) 

Polyhedral organic cations. By applying the con- 
clusions of the graph-theoretical treatment for delo- 
calised polyhedral systems outlined above, we may make 
several deductions concerning the structures adopted by 
certain organic cations. We shah now present a simple 
topological rationalisation of the structures of the (CH)5+ 
and (CH)s” cations, and at the same time explore a 
number of other similar cases. This will result in our 
making predictions for organic cations of undetermined 
structure. 

A nido structure with one square hole and five vertices 
implies the presence of one interior vertex and four 
border vertices. By making use of formula (2), which is 
equivalent to formula (4) with h = 1, it may be seen that 
for a closed shell there is a total of 2 X 5 t 4 = 14 skeletal 
electrons. This is indeed the number of skeletal electrons 
in V, since each CH group in (CH)r contributes three 
electrons to the three interior orbit&, whilst one elec- 
tron is removed to form the cation (CH),‘. We may thus 
conclude that (CH)5’ fits well within the framework of 
polyhedral delocalised structures as a nido-type system. 
Relative to the classical localised structures II-IV, the 
nido structure attains additional stability by virtue of its 
closed shell of bonding electrons. The planar, delo- 
calised, classical structure I will clearly be energetically 
unfavourable because it is anti-aromatic. 

In order to determine whether other organic cations 
can fit into this same general scheme, we now go on to 
develop a universal equation. The latter may be derived 
by equating the number of skeletal electrons as given in 
eqn (4) to the number of electrons obtained from an 
appropriate count of the atoms and charges present in 
each species. We then arrive at the general balance 

2nt2h+2=3n-c, (5) 

where n is the number of carbon atoms involved in 
polyhedral delocalisation and c is the number of positive 
charges in the organic cation (CH),“. As each of the 
(CH) groups may be assumed to contribute three elec- 
trons to the total number of skeletal electrons, eqn (5) 
may be seen to represent simply the electron balance for 
a closed electron shell in a generalised organic cation 
with a cage structure. 

App/ying the universal equation. Upon rearrangement 
of eqn (5) we obtain the simplified version 

n=2htct2. (6) 

This equation implies that the formula of any polyhedral 
organic cation may be written as (CH)%L+2. In the case 
of nido monocations with c = 1 and h= 1 it follows 
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immediately that n=S, a result which merely conlirms 
what has already been established in the preceding 
paragraph on (CH)s’. Arachno monocations (c = 1, h = 2) 
might not be expected to fit into this general scheme as 
(CHh+ is the planar aromatic tropylium cation predicted 
originally by Htickel. This particular cation was first 
identified by Doering and Knox,= though it had actually 
been obtained much earlier in 1891 by Merling.= Like- 
wise, among the dications, arachno systems (c = 2, h = 2) 
should not be expected to exist in the form of deltahedra 
but rather as planar aromatic species, e.g. the planar 
cyck&tatetraene dication (CH),” reported by Olah el 
aLz*% llte same conclusion also applies to the (CH)Z2 
close systems. The monocation (CHb’ is the aromatic 
cyclopropenylium cation, whose derivatives were first 
obtained by Breslow,U*27 and the dication (CMe),*’ is 
the planar aromatic cyclobutadiene dication.% 

In contrast. to the foregoing, we now predict on the 
basis of the present treatment using only algebraic graph 
theory (as opposed to highly sophisticated quantum 
mechanical calculations) that the nido dication VIII of 
Fig. 3 (with c = 2, h = 1, and formula (CH),“) will adopt 
a polyhedral structure. Experimental data presented by 
Hogeveen and Kwant”*” for (CMe~*+ convincingly 
demonstrate that this species does indeed have the pre- 
dicted structure. Moreover, a derivative of the isoelec- 
tronic carborane monocation CsBHa+ was recently 
reported” to possess the analogous structure of a pen- 
tagonal pyramid, i.e. the structure IX shown in Fig. 3. 

It is striking that all three of the monocations and 
dications V, VII and VIII, i.e. the species (CH),+, (CHk+ 
and (CH),“, should be anti-aromatic according to 
Hiickel MO theory because they each possess 4 m elec- 
trons, where m = 1 or 2. The theory is based upon the 
assumption that these systems exist in the form of planar 
C, structures, whereas we know that the systems actu- 
ally adopt polyhedral structures. We thus reaeh the 
general conclusion that tridimensional delocalisation to 
non-classical polyhedral systems appears to be an ac- 
ceptable alternative for organic monocations and dica- 
tious which according to Htickel MO theory should be 
anti-aromatic. In the predictions which are given below it 
is tacitly assumed that tridimensional delocalisation is 
the preferred alternative structure for such systems. 

In purely algebraic terms, we may expect an organic 
cation (CH)Sl+,+2 to be planar and aromatic whenever its 
number of delocalised electrons satisfies the Htickel 
4 m + 2 rule. In this case we can set 

(2htct2)-c=4mt2, (7) 

which leads directly to the result h=2m. This thus 
applies to close systems (where m = 0, and hence h = 0) 
and to arachno systems (where m = 1, and hence h = 2). 
On the other hand, an organic cation (CH)5i!+c+2 is 
predicted by the Hiickel 4m rule to be anti-aromatic 
whenever the equation 

(2htct2)-c=4m, (8) 

is satisfied, leading to the result h = 2 m - 1. This would 
apply to nido systems (where m = 1, and hence h = 1) 
and possibly also systems having m = 2, i.e. to systems 
having h = 3 holes. The derivatives (CH)s’ and (CH),*’ 
are known to adopt the preferred polyhedral delocalisa- 
tion, though there are at present no experimental analo- 
gues of systems having h = 3. 

Use of descriptive formulae. In deriving the eqns (lb 
(6) we have always assumed that all n of the atoms 
considered belong to the polyhedral system. As may be 
seen from the compounds VI and VII illustrated in Fig. 
2, however, a number of the atoms may not form part of 
the polyhedral cation. Provided that the distance be- 
tween two pairs of atoms is not greatly distorted, the 
direct bonds between such pairs may be replaced by a 
“horn0-type” bonding. In order to distinguish the 
pyramidal part of the system from the remainder of the 
molecule, we now introduce the notion of the descriptive 
formula in which the pyramidal part of a species is 
enclosed within square brackets. Thus, in the case of the 
system (CHk,‘, represented as species VII, the descrip- 
tive formula would be written as 

WIG+, 

whilst that for the CsHMes+ system, represented as 
species VI, assumes the form 

[GHMe,]‘. 

A benzo-derivative of the system VII is conceivable 
where the vinylene group in VII is replaced by an 
ortho-phenylene group. Such a system is illustrated as 
the species XII in Fig. 5; in our descriptive formula 
notation it may be written as 

Furthermore, our analysis indicates that bis-homodica- 
tions, which could result from an appropriate com- 
bination of the features of systems VI and VII with those 
of system VIII, may also assume the form of polyhedral 
organic cations. These dications may posstbly exhibit 
fluxional character; as indicated by the structure XIII in 
Fig. 5, R may be a CR*, RGCR, or an 046% group. 

XII XIII 
Fig. 5. Predicted polyhedral structures for the monocation XII 

and for the dication XIII. 

CONC!LUsH)N 
We have restripted the present discussion almost 

exclusively to the mono- and dication species, that is to 
those cases where c is either 1 or 2. This is because to 
date no stable analogous structures with more than two 
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positive charges have been prepared. If either (CHh” or 
some of its derivatives could be synthesized, we would 
on the above reasoning expect them to adopt polyhedral 
delocalised structures rather than a planar anti-aromatic 
structure or any sort of classical localised structure. 

Several authors have emphasized the fundamental 
similarity existing between the geometrical (or molecular 
orbital) structures of the polyhedral boranes and car- 
boranes and the corresponding structures of the poly- 
hedral organic cations. As examples one might cite here 
the Nobel Prize address of LipscombS and Bchleyer’s 
comments on Brown’s book concerning the non-classical 
ion problem.30 A theoretical treatment of polyhedral 
delocalisation and its basic similarity to planar aromatic 
delocalisation has recently been presented by Aihara.3’ 
Mian and Hoffmann” have pointed out the similarity 
between isolobal groups of the type BH, CH’ and 
Fe(CO)3, which contribute one pair of electrons and two 
vacant orbitals to a molecule. This similarity was used by 
Schleyer et 01.~~ to draw analogies between known 
organometallic complexes on the one hand and poly- 
hedral boranes, carboranes and organic cations on the 
other. By combining such isolobal groups a host of 
feasible polyhedral structures could result, all of which 
would fit into our graph-theoretical treatment of poly- 
hedral delocalisation outlined above. Such an approach is 
obviously much more straightforward than one involving 
elaborate theoretical calculations’*” on these species and 
accordingly it might be hoped that the ideas presented 
herein may be appropriately developed in subsequent 
work. 

Acknowledgement-Discussions with Dr. T. Constantinescu are 
gratefully acknowledged. 

JlEFERENCEs 

‘W. D. Stohrer and R. Hoffmann, 1. Am. Chem. Sot. 94, 1661 
(1972). 

*R. E. Williams, Inorg. Chem. 10, 210 (1971). 
‘S. Masamune, M. Sakai, U. Gna and A. J. Jones, J. Am. Chem. 
Sot. 94.8956 (1972). 

‘“S Masamune, J. Pure Appl. Chem. 44, 861 (1975); bS. Mas- 
amune, M. Sakai, A. V. Kemp-Jones, H. Gna, A. Venot and T. 
Nakashima, Angew. Chem. Int. Ed. Engl. 12,769 (1973); ‘A. V. 
Kemp-Jones, M. Nakamura and S. Masamune, 1. Chem. Sot. 
Chem. Comm. 109 (1974). 

‘M. J. S. Dewar and R. C. Haddon, 1. Am. Chem. Sot. 95,5836 
(1973); H. Kollmar, H. 0. Smith and P. von R. Schleyer, Ibid. 
5834; W. J. Hehre and P. von R. Schleyer, Ibid. 5837. 

6A. T. Balaban, Rev. Roumaine Chim. 15, 463 (1970): 19, 1611 
(1974). 

‘H. Hart and M. Kuzuya, J. Am. C/tern. Sot. 94,8958 (1972); 96, 
6436 (1974); 97,245O (1975). 

“H. Hart and R. Willer, Tefrahedron Letters 4189 (1978). 

PR. M. Coates and E. R. Fretz, Ibid. 1955 (1977). 
‘OH. Hogeveen and P. W. Kwant, Act. Chem. Res. 8,413 (1975). 
“H Hogeveen and P. W. Kwant, 1. Am. Chem. Sot. %, 2208 

11974): Tetrahedron Letters 1665 (1973): H. Hoaeveen. P. W. 
Kwant, 1. Postma and P. Th. van &y&n, Ibid. i351 (1974). 

‘*R. B. King and D. H. Rouvray, J. Am. Chem. Sot. 99, 7834 
(1977). 

“D. H. Rouvray and A. T. Balaban, Applications of Graph 
Theory (Edited by R. I. Wilson and L. W. Beineke), Chap. 7. 
Academic Press, London (1979). 

“Chemical Applications of Graph Theory (Edited by A. T. 
Balaban). Academic Press, London (1976). 

‘jD. H. Rouvrav. R. I. C. Revs 4. 173 (1971): Chem. Mt. 10. 11 
(1974); Chem..kc. Revs 3,355’(1974); 1. Chem. Educ. 52,768 
(1975). 

16R. J. Wilson, Introduction to Graph Theory. Oliver and Boyd, 
Edinburgh (1972). 

“F. Harary, Gmph Theory. Addison-Wesley, Reading, Mass. 
(1%9). 

‘sK. Wade, Adu. Inorg. Chem. Radiochem. 18,l (1976). 
‘W. C. Hemdon, M. L. Ellzey and K. S. Raghuveer, I. Am. 

Chem. Sot. 1082645 (1978). 
q. L. Biggs, Algebraic Graph Theory. Cambridge University 

Press, L&don (1974). 
*‘R. B. Kinu and D. H. Rouvrav. Theor. Chim. 

(1978). - 
Acta 48. 207 

*Q. B. King, 1. Am. Chem. Sot. 94,95 (1972); K. Wade, Chem. 
Commun. 792 (1971): D. M. P. Minaos. Nature ILondon) Phvs. 
Sci. X36,99 (1972). ” 

I _ 

=W. von E. Doering and L. H. Knox, 1 Am. C/rem. Sot. 76,3283 
(1954). 

z’D. Lloyd, Carbocyclic Non-Benzenoid Aromatic Compounds. 
Elsevier, Amsterdam (1966); G. M. Badger, Aromatic Charac- 
ter and Aromaticitv. Cambridae Universitv Press (1%9): P. I, 
Garratt, Aromatic&. McGraw~Hill, London (1971); I. A&anat, 
iUTP Internet. Reviews of Science. Organic Chemistry Ser. I, 
Vol. 3, p. 139. Butterworths (1973). 

2.‘G. A. Olah, J. S. Staral, G. Liang, L. A. Paouette, W. P. Melega 
and hi. J. Carmody, I. Am. Chem. Sot. 9!J. 3349 (1977); J. S. 
Staral (superviser G. A. Olah), fiseri. Abstr. 37B, 2685 (1976). 

%G. A. Olah and G. D. Mateescu, 1. Am. Chem. Sot. 92, 1430 
(1970); G. A. Olah and J. S. Staral, Ibid. 91). 6290 (1976). 

nR. Breslow. Ibid. 79. 5318 11957): see A. W. Krebs. Annrw. 
Chem. Int. Ed. Engl. 4, 10 (P&S).” 

mP. Jutzi and A. Seufert, Ibid. Int. Ed. Engl. 16,330 (1977). 
W. N. Lipscomb, Science I%, 1046 (1977); Angew. Chem. 89, 

685 (1977). 
9. C. Brown (with comments by P. von R. Schleyer), l7re 

Nonclassical Zen Problem, p. 16. Plenum Press, New York 
(1977). 

-“J. Aihara, 1. Am. Chem. Sot. IO&3339 (1978). 
32M. Elian and R. Hoffmann, Inorg. Chem. 14, 365 (1975); M. 

Elian. M. M. L. Chen. D. M. P. Minaos and R. Hoffmann. Jbid. 
15, Ii46 (1976). 

))J. Chandrasekhar, P. von R Schleyer and H. B. Schlegi-$ 
Tetrahedron Letters 3393 (1978). 

“H. J. Jonkman and W. C. Nieuwport, Ibid. 1671 (1973); S. 
Yoneda and Z. Yoshida, Chem. Letters Japan 607 (1972). 


